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Abstract. The ability to detect convective regions and assimilating the proper heating in these regions is the most important 

skill in forecasting severe weather systems. Since radars are most directly related to precipitation and are available in high 

temporal resolution, their data are often used for both detecting convection and estimating latent heating. However, radar data 

are limited to land areas, largely in developed nations, and early convection is not detectable from radars until drops become 10 

large enough to produce significant echoes. Visible and Infrared sensors on a geostationary satellite can provide data that are 

less sensitive to drop size, but they also have shortcomings: their information is almost exclusively from the cloud top. 

Relatively new geostationary satellites, GOES-16 and GOES-17, along with Himawari-8, can make up for some of this lack 

of vertical information through the use of very high spatial and temporal resolutions. This study develops two algorithms to 

detect convection at different life stages using 1-minute GOES-16 ABI data. Two case studies are used to explain the two 15 

methods, followed by results applied to one month of data over the contiguous United States. Vertically growing clouds in 

early stages were detected using decreases in brightness temperatures over ten minutes. Of the detected clouds, the method 

correctly identifies 71.0% to be convective. For mature convective clouds which no longer show decreases in brightness 

temperature, the lumpy texture, and rapid temporal evolution can be observed using 1-minute high spatial resolution 

reflectance data. The algorithm that uses texture and evolution for mature convection detects with an accuracy of 85.8%. 20 

54.7% of clouds that are identified as convective by the ground-based radars are missed by the satellite. These convective 

clouds are largely under optically thick cloud shields. 

1 Introduction 

While weather forecast models have improved tremendously throughout the decades (Bauer et al., 2015), local scale 

phenomena such as convection remain challenging (Yano et al., 2018). Precipitation is especially hard to predict as numerical 25 

models struggle with initiating convection in the right location and intensity. To address this issue in short term predictions, 

many models now assimilate all-sky radiances and precipitation-related products where available. (Bonavita et al., 2017; 

Benjamin et al., 2016; Migliorini et al., 2018; Geer et al., 2017; Jones et al., 2016) In some forecast models such as the High 

Resolution Rapid Refresh (HRRR) model in the United States, latent heating is added, along with precipitation affected 
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radiances, to adjust model dynamics to correspond to the observed convection (Benjamin et al., 2016). Given the rather 30 

recent emergence of these techniques, and the complex structure of latent heating (Tao et al., 1990), there is not yet a 

standard method of how best to assimilate this heating. Nor is there a direct measurement of latent heating, although it is 

generally accepted that convective regions have positive heating throughout the vertical column while stratiform regions have 

negative heating in the lower layers and positive heating aloft. Because local scale phenomena tend to develop first by 

convective clouds before detraining stratiform precipitation, it is critical to correctly detect convective regions. 35 

 

Convection is classically defined from in-cloud vertical air motions (Steiner et al., 1995). However, since vertical velocity is 

rarely measured directly, the radar community initially adopted radar reflectivity thresholds to define convection and 

distinguish it from stratiform precipitation (Churchill and Houze, 1984; Steiner et al., 1995). One problem with using 

reflectivity threshold is its sensitivity to the selected threshold for convection. If the threshold is set high, convective regions 40 

where precipitation has just begun are not captured, while a threshold that is set too low will misclassify some stratiform 

regions as convective. To address this issue, Churchill and Houze (1984) separated precipitation types using the horizontal 

structure of precipitation fields (Steiner et al., 1995). They classified a grid as convective if the grid had rain rates twice as 

high as the average taken over surrounding grids or had reflectivity over 40dBZ (~ 20 mm h-1). Steiner et al. (1995) refined 

this method with three criteria: intensity, peakedness, and surrounding area. They used the same threshold of 40dBZ for 45 

intensity, but used variable thresholds for reflectivity differences between convective cores and surrounding areas depending 

on the mean background reflectivity. Nonetheless, stratiform regions sometimes can have reflectivity values greater than 

40dBZ. Zhang et al. (2008) used two reflectivity criteria for convective precipitation-namely that the reflectivity be greater 

than 50dBZ at any height and greater than 30dBZ at -10°C or higher. Zhang and Qi (2010) used a vertically integrated liquid 

water field and had a single threshold of 6.5kg m-2. Qi et al. (2013) developed a new algorithm that combined two previous 50 

methods from Zhang et al. (2008) and Zhang and Qi (2010). By combining these two methods and modifying the thresholds, 

they were able to decrease misclassification of stratiform regions with strong bright band features, but could still miss some 

convective regions in their initial stage due to a high reflectivity threshold. The HRRR model uses a much lower reflectivity 

threshold of 28dBZ to detect convective regions and assigns a heating increment (Weygandt et al., 2016). While this is 

significantly lower than the thresholds discussed above, its primary purpose is to initiate convection where there is significant 55 

echo present, while relying on the model physics to assign the proper precipitation type.  

 

While radars have been the preferred method for detecting convection, they are not the only instruments available. Visible 

(VIS) and infrared (IR) radiances also contain some information, although largely limited to cloud top properties. Convection 

detection algorithms using VIS and IR sensors exist for both convective initiation (CI) and mature stages. At the initial stages 60 

of convection, cloud tops grow vertically, and most algorithms use decreased cloud top temperature from the growth (related 

to the in-cloud vertical velocity) to detect convective regions. The cloud-top-cooling (CTC) algorithm (Sieglaff et al., 2011; 

Sieglaff et al., 2014) calculates averaged brightness temperature (Tb) in a small region and finds pixels with cooling trends. 
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The algorithm eliminates pixels with false cooling from horizontal cloud advection, thin cirrus motion, and complex 

multilayer cloud scenes and only detects vertically growing clouds (Sieglaff et al., 2011). Another algorithm by Mecikalski 65 

and Bedka (2006) tracks clouds and determines if the clouds have a high likelihood for CI by using spectral thresholds in 

interest fields. Interest fields include the temporal trend of Tb at 10.7µm or temporal trends of differences in Tb between two 

channels that are sensitive to water vapor or cloud water (Mecikalski and Bedka, 2006).  

 

Convective clouds in their mature stage cannot be detected by the abovementioned algorithms as their cloud tops do not grow 70 

much in the vertical, and therefore do not exhibit cooling in the mean Tb is observed over time. “Lumpy surface” is a well-

known feature of mature clouds from constant bubbling (Mecikalski and Bedka, 2006). Existing algorithms used 

Overshooting Top (OT) features in such clouds. There are two approaches to detect OTs: the brightness temperature 

difference method and the infrared window-texture method (Ai et al., 2017). The brightness temperature difference method 

uses a difference in Tb between the water vapor (WV) channel and IR window channel (Tb,wv – Tb,IR). Positive values of Tb,wv 75 

– Tb,IR due to the forcing of warm WV from below into the lower stratosphere are used as an indicator of OTs (Setvak et al., 

2007). However, since the threshold for the difference between two channels can depend on several factors, Bedka et al. 

(2010) suggested another method to detect OTs which is called the Infrared window-texture method. This method takes 

advantage of a feature of OT that it is an isolated region with cold Tb surrounded by relatively warm anvil region (Bedka et 

al., 2010). This method, unfortunately, cannot avoid having to choose Tb thresholds that vary according to seasons or regions 80 

(Dworak et al., 2012). Bedka et al. 2016 tried to minimize the use of fixed detection criteria. They developed two OT 

detection algorithms based on IR and VIS channels, and an OT probability was produced through a pattern-recognition 

scheme. The pattern-recognition scheme using VIS channels uses visible texture caused by strong updrafts.  

 

The use of VIS and IR sensors in detecting convection can benefit significantly with the launch of National Oceanic and 85 

Atmospheric Administration’s (NOAA’s) Geostationary Operational Environmental Satellites (GOES) – R Series which has 

high resolution, rapidly updating (i.e. 1 minute) imagery. This study makes use of this new data, namely the 1 minute data 

available from GOES-16 and GOES-17 in “mesoscale sectors” to update methods for detecting convection in different 

stages. One is developed for CI using Tb from an IR channel in GOES-R. As in previous papers by Mecikalski and Bedka 

(2006) or Mecikalski et al. (2010), temporal trends of the data were used but, since GOES-R has high temporal resolution, ten 90 

consecutive data with 1-minute interval were used. This procedure eliminates errors from cloud movements that needed to be 

dealt with in previous studies. Another one is developed for mature convection using both reflectances from a VIS channel 

and Tb. For this algorithm, lumpy and rapidly changing surface and high cloud top height from mature convective clouds 

were used to detect clouds both with and without OTs. These two methods were then combined to provide detection of 

convection in all stages. The above methods are not intended to replace ground-based radars where these are available. 95 

Instead, the focus here is complementing ground-based networks, either off-shore or other regions lacking coverage. 
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The datasets that were used to detect convection and validate the results are described in Sect. 2, while the methods used to 

identify initial and established convection are explained in Sect. 3. Sect. 4 highlights the results of each method. Two case 

studies were examined followed by a one-month statistical study to quantify the operational accuracy of the methods. 100 

2 Data 

2.1 The Geostationary Operational Environmental Satellite R series (GOES-R) 

Earth-pointing instruments of GOES-R consist of the Advanced Baseline Imager (ABI) with 16 channels, and the 

Geostationary Lightning Mapper (GOES-R Series Data Book, 2019). GOES-16 is the first of the two GOES-R series 

satellites to provide data for severe weather forecast over the United States and surrounding oceans (Smith et al., 2017). Both 105 

Tb and reflectance data from the ABI were used to detect convective regions. Spatial and temporal resolutions of the GOES-

16 data are summarized in table 1. Mesoscale data with one minute temporal resolution were used to fully exploit its high 

temporal resolution of the new instrument.  

 

Reflectance at 0.64µm (Channel 2) and Tb at 6.2µm (Channel 8), 7.3µm (Channel 10), and 11.2µm (Channel 14) were used 110 

in the study. Channel 2 is a “red” band with the finest spatial resolution of 0.5km. This fine spatial resolution is useful to 

resolve lumpy, or bubbling surfaces of clouds in their mature stage. Channel 2 reflectance data were normalized by solar 

zenith angle so that a single threshold can be used throughout the method regardless of locations of the sun. Channel 14 is an 

IR longwave window band, which is a good indicator of the cloud top temperature for cumulonimbus clouds (Müller et al., 

2018). High reflectance and texture of the cloud top seen in channel 2 and cloud top height inferred from channel 14 are 115 

combined to determine locations of mature convective clouds.  

 

Channel 8 and 10 are ABI water vapor channels with 2km spatial resolution. Because Channel 8 sees WV at somewhat 

higher altitudes than Channel 10, they can observe WV associated with updrafts as they progress upwards, and were therefore 

used to detect early convection. 120 

2.2 NEXRAD and MRMS 

Multi-Radar/Multi-Sensor (MRMS) data developed at NOAA’s National Severe Storms Laboratory were used for validation 

purposes. MRMS integrates the radar mosaic from the Next Generation Weather Radar (NEXRAD) with atmospheric 

environmental data, satellite data, lightning, and rain gauge observations to produce three dimensional fields of precipitation 

(Zhang et al., 2016). These quantitative precipitation estimation (QPE) products have a spatial resolution of 1km and 125 

temporal resolution of 2 minutes.  
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A “PrecipFlag” variable contained in the standard MRMS product classifies precipitating pixels into seven categories: 1) 

warm stratiform rain, 2) cool stratiform rain, 3) convective rain, 4) tropical–stratiform rain mix, 5) tropical–convective rain 

mix, 6) hail, and 7) snow. Details of the classification can be found in Zhang et al. (2016). A reduced set of these classes 130 

were used to validate the convective classification from GOES ABI data. In this study, warm stratiform rain, cool stratiform 

rain, and tropical-stratiform rain mix are all assigned a stratiform rain type while grids with convective rain, tropical-

convective rain mix, and hail are assigned a convective rain type. Along with the classification product, MRMS provides a 

variable called “Radar QPE quality index (RQI)”. This product is associated with quality of the radar data, which is a 

combination of errors coming from beam blockages and the beam spreading/ascending with range (Zhang et al., 2016). This 135 

flag is used to mask out regions with low radar data quality. Only data with RQI greater than 0.5 are used in this study. 

3 Methodology 

This study examines methods to detect convective clouds at each life stage. Convective clouds can be divided into actively 

growing clouds and mature clouds. Actively growing clouds are usually clouds at the initial stage that grow nearly vertically 

while mature clouds are capped, but continue to bubble due to the release of latent heat. They often move horizontally after 140 

they reach the tropopause. The proposed method to detect actively growing cloud is similar to the GOES-R CI algorithm in 

the sense that the method uses temporal trends of Tb. The availability of higher temporal resolution data, however, allows us 

to simplify the method somewhat to use only two channels in the water vapor absorption band. The high temporal resolution 

data further simplifies the method because the use of derived wind motion in tracking clouds is no longer necessary. One 

minute is short enough that cloud motion, at most, is to the adjacent grids, and clouds can be easily tracked by focusing on 145 

overlapped scenes.   

 

The method to detect mature convective clouds is similar to previous studies by Bedka et al. 2016 and Bedka et al. 2019 in 

terms of using the texture of the cloud top surfaces to infer strong updrafts. Cloud top surfaces of mature convective clouds 

are much bumpier than any other clouds, and their bumpiness is most evident in VIS images with the finest resolution. The 150 

following method uses horizontal gradients of reflectance to represent the bumpiness of cloud tops, and the magnitude of the 

gradients are used to distinguish convective cores from their anvil clouds. Cloud top temperatures from channel 14 are used 

to eliminate low cumulus clouds that might appear bubbling. 

3.1 Detection of actively growing clouds with brightness temperature data 

In the early stage of convection, updrafts of water vapor eventually lead to condensation, the release of latent heat, and 155 

convective processes. Operational weather radars cannot observe this, but GOES-ABI, with water vapor absorption bands, 

can. During the early convective stages, Tbs that are sensitive to water vapor will decrease due to the increasing height (and 

cooler temperature) of water vapor and cloud droplets. Two ABI channels around the water vapor absorption bands, channel 

8 (6.2µm) and channel 10 (7.3µm), were selected to cover water vapor updrafts at different height levels. These channels 
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were used to find small regions consistent with developing clouds. If a cloud develops continuously for ten minutes and 160 

shows a large decrease in Tb over ten minutes in either channel, the cloud is determined to be convective.  

 

To compute the Tb decrease in clouds, a window has to be defined as it is usually difficult to precisely define the boundary of 

clouds, especially at the early stages of convection. Since most of the early convective clouds are smaller than 10km in 

diameter, the window was defined as a 10km´10km box which is essentially a 5´5 matrix of satellite pixels consisting of 25 165 

Tbs with 2km resolution. Considering the fact that a convective core usually has the lowest Tb within its neighborhood, the Tb 

matrix was formed around a pixel only if that pixel had the lowest Tb in the 5´5 matrix. However, this criterion alone could 

not distinguish convective cores from stratiform clouds and cloud edges which can also exhibit a local minimum. In addition 

to the lowest Tb, the shape of convective clouds is therefore also considered. As shown in the Fig. 1a, convective clouds not 

only have the lowest Tb in their cores in all directions, but also have increasing Tbs away from the core, making their Tb 170 

distributions look like an inverted two-dimensional (2D) Gaussian distribution. To select Tb matrices that have this inverted 

Gaussian shape, an inverted 5´5 Gaussian matrix that has mean and standard deviation of the Tb matrix was created and 

compared with the Tb matrices. To focus the comparisons on the shape of the Tb distribution (Fig. 1b), the maximum Tb 

found in the 5´5 matrix was subtracted from all values, and Tb values were divided by the difference between maximum and 

minimum Tb to normalize the Tb matrix itself. If the Tb matrix has a shape of a developing cloud (i.e. 2D inverse Gaussian), 175 

the absolute value of the difference between two matrices will be small. A threshold of 10 for this absolute value of the 

difference between Tb shape and inverse Gaussian shape (sum of residuals between normalized Tb and inverse Gaussian) was 

empirically determined to exclude non-convective scenes. Tb matrices with values greater than 10 are removed from the 

scene. This is done for all ten consecutive Tb images that are one minute apart. Continuous overlaps of Tb matrices for ten 

minutes imply that the cloud maintained a convective shape for ten minutes, and therefore, changes in Tb are calculated to 180 

assess if the cloud in the Tb matrices was growing. 

 

The minimum Tbs of the Tb matrices at each time step were linearly regressed against time to measure a decreasing trend. 

Since one-minute data can be noisy, the decreasing trend was considered instead of an actual difference in Tb during 

10minutes.  If the fitted line had a slope smaller than -1K/min for channel 10 or -0.5K/min for channel 8, the grid with the 185 

lowest Tb at each time step for ten minutes as well as the neighboring 8 grids in the window were classified as convective. 

The threshold of -1K/min and -0.5K/min were determined empirically, although it might not be the perfect threshold. Some 

convective clouds in the early stage show smaller decreasing trend, but using a smaller value for the threshold can introduce 

clouds that do not grow into deep convective clouds in the end. Clouds that develop into deep convective clouds are 

eventually captured by these thresholds in later times even if they had small decrease in the beginning. Actively growing 190 

clouds are usually detected by channel 10 first and then by channel 8. This makes sense because channel 10 sees water vapor 

https://doi.org/10.5194/amt-2020-38
Preprint. Discussion started: 25 June 2020
c© Author(s) 2020. CC BY 4.0 License.



7 
 

in lower parts of the atmosphere while channel 8 sees upper level water vapor. Using two channels help find the same clouds 

in different levels. 

3.2 Detection of mature convective clouds with reflectance data 

Mature convective clouds consist of convective cores and stratiform or cirrus regions where clouds have detrained from the 195 

core. The lack of discrete boundaries between different types of clouds make it difficult to separate convective grids from 

surrounding stratiform regions. Overshooting tops and enhanced-V pattern are well-known features in mature convective 

clouds, but these do not appear until their strongest stage and not in all convective clouds. Using such features associated 

with the deepest convective cores will create a detection gap between early and mature stages of convection. The method 

described here tries to minimize the gap, while still accurately detecting convective clouds.  200 

 

A distinct feature that appears in convective clouds, even in their early stages, is a bubbling cloud top. The lumpiness of 

cloud tops can be numerically represented by calculating horizontal gradients in the reflectance field with the Sobel-Feldman 

(Sobel) operator which is commonly used in edge detection. The horizontal gradient is calculated at each pixel. The Sobel 

operator convolves the target pixel and its surrounding eight grids with two kernels given in Eq. (1) to produce gradients in 205 

the horizontal and vertical direction. 

 

G" = 	
+1 0 −1
+2 0 −2
+1 0 −1

				G* = 	
+1 +2 +1
0 0 0
−1 −2 −1

				             (1) 

 

By using Eq. (2), gradients in each direction are combined to provide the absolute magnitude of the gradient at each point. 210 

 

Magnitude	of	gradient = 	 G"7 + 	G*7        (2) 

Flat surfaces will have low gradients while cloud edges or lumpy surfaces will have high gradients. This lumpy feature is 

most evident in a VIS channel with the finest spatial resolution of 0.5km. IR fields are not very useful as the brightness 

temperature variations in these lumpy surfaces tend to be quite small relative to the IR’s 2km resolution, and only cloud 215 

edges stand out. 

 

Before evaluating the texturs, only the grids that are potentially parts of deep convection are selected using simple threshold 

values of VIS (ABI channel 2; 0.65µm) and IR (ABI channel 14; 11.2µm) channels. Channel 2 reflectance is highly 

correlated with the cloud optical depth (Minnis and Heck, 2012) while Channel 14 brightness temperature is related to cloud 220 

top temperature (Müller et al., 2018). These channels are used in GOES-R baseline product retrieval of cloud optical depth 

https://doi.org/10.5194/amt-2020-38
Preprint. Discussion started: 25 June 2020
c© Author(s) 2020. CC BY 4.0 License.



8 
 

and cloud top properties, respectively. Any grids with reflectance less than 0.8 or Tb greater than 250K during ten time steps 

(10 minutes) are removed since they generally represent thin or low clouds such as cirrus or growing clouds that can be 

identified by the CI method described earlier. These thresholds are chosen rather generously to include some convective 

clouds that have not grown into deep convection yet, while still avoiding the misclassification of low cumulus clouds and thin 225 

anvil clouds as convective. The threshold of 250K is much warmer than typical values used in detecting deep convective 

features such as overshooting tops (Bedka et al., 2010) or enhanced-V (Brunner et al., 2007). It is intentionally chosen so that 

the method considers warmer convective clouds without those features in the next step when evaluating lumpiness of cloud 

top. The choice of these thresholds is discussed in more detail in section 4.3.  

 230 

Once cold, highly reflective scenes are identified, the horizontal gradients of reflectance are calculated using the Sobel 

operator. The average of the horizontal gradients over the ten 1-minute time steps is calculated for each grid, and grids are 

removed if the average was less than 0.4 or greater than 0.9. Values below 0.4 or above 0.9 generally implies either stratiform 

region with a flat surface or cloud edges with very high gradients. The remaining grids were then interpolated into 1km maps 

to be consistent with the spatial resolution of MRMS dataset. Neighboring grids were grouped to form clusters, and only the 235 

clusters with more than 5 grid points were assigned as a mature convective cloud to remove noise. 

4 Results 

We begin the result section with two case studies that illustrate the technique as well as some of its limitations. 

4.1 June 28th, 2017 

Supercell thunderstorms developed in Iowa and produced several tornado touchdowns. In Fig. 2a, deep convection had 240 

already developed over central Iowa at 19:30UTC, and two convective cells in the red box started to develop in southeast 

Iowa, although they do not stand out from surrounding low clouds in the VIS image. These two convective clouds became 

parts of major storm system that formed around 21:30UTC, producing the tornadoes (Fig. 2b) in the area. The two cells 

appeared in the Omaha (KOAX), Des Moines (KDMX), and La Crosse (KARX) NEXRAD radars at 19:30UTC (Fig. 2c), but 

reflectivity was very weak (≤ 30dBZ). In addition, the MRMS PrecipFlag product is shown in Fig. 2d. Convection is colored 245 

in pink and stratiform in green. Although deep convections over central and northeast part of Iowa were assigned as 

convective in MRMS at 19:30UTC, the two growing clouds in the red box in Fig. 2a were not assigned convective flag until 

19:48UTC.  

 

Figure 3a shows brightness temperatures for ABI channel 10 at 19:27UTC. The two growing convective cells in the white 250 

circle are shown in barely visible yellow surrounded by high Tbs. The one on the left was detected using 10-minute data from 

19:25UTC, but since both clouds were detected starting at 19:27UTC, a scene from 19:27UTC was used to demonstrate the 

method. Figure 3c and 3d show Tb matrices that exhibited the correct shape for developing cells (Gaussian shape) at 
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19:27UTC and 19:36UTC. However, not all of the matrices in these figures showed the evolution of the developing cells 

(decreasing minimum Tb over 10K) between the two time steps. The only two matrices in this scene that satisfied both 255 

criteria of maintaining the shape of developing cells and growing vertically over ten time steps were the two in blue circles. 

These two matrices contain early convective clouds that grow into deep convection shown in Fig. 2b, and they are correctly 

captured by this method. Since the same method is used in each time step, the same window can be captured throughout an 

overlapping time period despite the starting time. Therefore, this method can be used continuously in time.  

 260 

Results for the detection of mature convective clouds are shown in a step by step fashion in Fig. 4. Figure 4a is the same as in 

Fig. 2a, but is mapped using a different color table for better comparisons between steps. Figure 4b shows the pixels retained 

after eliminating all the grids that did not meet the reflectance and Tb thresholds (minimum reflectance over ten time steps 

greater than 0.8 and maximum Tb over ten time steps less than 250K). Figure 4c shows the horizontal gradient values after 

applying the Sobel operator. The colorbar is set to be within the range of 0.4 and 0.9 to display potential convective regions 265 

that passed these thresholds in colors. White regions are either regions that have average gradients greater than 0.9 such as 

cloud edges or thin cirrus clouds, or regions that have average gradients less than 0.4 such as clear sky or stratiform regions. 

Eventually, only the regions that meet both the criteria in Fig. 4b and 4c are assigned to convection, and shown as white 

shade in Fig. 4d. When the locations of convective regions in Fig. 4c and 4d were parallax corrected with a constant cloud 

top height of 10km and compared to retrieved products from radars in Fig. 2c and 2d, most of convective regions align well 270 

with high reflectivity regions in Fig. 2c and convective regions in Fig. 2d. However, a straight line around 44N at the right 

edge of Fig. 4d is definitely not a convective region, and it is due to unrealistically high reflectance in the raw satellite 

dataset. These kinds of artifacts were removed later in section 4.3 when the method was applied to a full month of data. 

However, multiple lines are difficult to remove at this stage in the processing and will result in false alarm. As quality control 

procedures on ABI are improved, this may no longer be a source of significant errors.  275 

4.2 June 18th, 2018 

Another case was examined to evaluate the methods under different conditions. Severe storms developed over the Great 

Plains in June 18th, 2018, producing hail on the ground. At 22:30UTC, sporadic storms across Kansas and Oklahoma were 

observed by GOES-16. This scene contains both growing and mature convective clouds, and MRMS PrecipFlag for the scene 

is shown in Fig. 5a and 5b. Green color represents stratiform and pink color represents convective clouds. Figure 5c and 5d 280 

are brightness temperature maps of the same scene at 22:30UTC and 22:40UTC, respectively. Growing clouds are shown in 

purple, blue, yellow, and green boxes. Convection in the purple box is detected using ten consecutive Tb data starting at 

22:19UTC. Considering the last data used at 22:28UTC, it was detected six minute earlier than MRMS detection which was 

at 22:34UTC. The growing cloud in the blue box was detected 7 minute after MRMS detection at 22:38UTC. This cloud did 

not grow rapidly enough and did not meet the Tb threshold for channel 10 at the onset of convection. However, it was 285 

detected by channel 8 as it grew higher altitudes. Similarly, a cloud in the green box was detected by channel 8 starting at 
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22:27UTC. Although it precipitated, this cloud did not grow into a severe storm. The growing cloud in the yellow box was 

detected by GOES using data from 22:29UTC and detected by MRMS at 22:38UTC. These results show that even though the 

thresholds for the Tb method can be strict for some growing clouds, the thresholds were adequate for detecting convective 

storms in their earliest stages.   290 

 

Black regions superimposed on the brightness temperature map in Fig. 5c represent convective regions identified by the 

mature convection method. There are slight misalignments of detected convective clouds between MRMS PrecipFlag 

products and GOES results possibly due to sheared vertical structures of the storms, but overall, they seem to match well.  

4.3 Statistical results with one-month data 295 

Thresholds used in the two case studies were chosen based on experiments applied to one month of data during June of 2017. 

The Tb method for detecting early convection only requires one threshold of Tb decrease. However, since water vapor 

channels have different sensitivity to water vapor, different values for the threshold are required for each channel (channel 8 

and 10). Since clouds do not grow at the same speed, and growth rate can vary at different evolution stages, it is important to 

find an appropriate threshold that best represents growth rate for clouds in their early stages. In order to investigate proper 300 

values, the 5´5 Tb windows that maintained the developing shape and had a decreasing trend of Tb during ten minutes are 

collected over the one month period. A total of 27971 and 73204 (for channel 8 and 10, respectively) 5´5 windows were 

collected, and precipitation types from MRMS were assigned for each window. Future MRMS convective flags up to 30 

minutes were included in the analysis because some time delays were observed in MRMS product when assigning convective 

flags, especially for early convection. When comparing GOES products to future MRMS products, future locations of GOES 305 

products were calculated assuming convection moves at a constant speed. Tables 2 and 3 show results applying different 

thresholds ranging from -0.1K/min to -2.0K/min. Numbers in the table represent the number of 5´5 windows that MRMS 

precipitation flags were assigned to either non-convective or convective at the corresponding 10-minute time window, as well 

as pixels that were flagged as convective by MRMS in the next 20 minutes to account for the fact that GOES can detect 

convection before the radar sees precipitation. For channel 8, using a threshold less than -1.4K/min has 100% accuracy, but 310 

in return, it misses much of the convection and loses an ability to detect convection earlier than radar because most of early 

convection does not have such a strong updraft. Thresholds are chosen so that it achieves at least 85% accuracy and detects 

reasonable amounts of convections. Therefore, -0.5K/min and -1.0K/min are chosen for channel 8 and 10, respectively. It is 

interesting to note that some clouds did not produce precipitation even with rapid growth over -2.0K/min (for channel 10). 

This could be because evaporation occurred while it fell, leading to virga, or it did not have enough time to grow bigger due 315 

to such a strong updraft. 

 

The reflectance method used to identify mature convection uses three thresholds; reflectance at channel 2 and Tb at channel 

14 to remove shallow and low clouds, and horizontal gradients of reflectance at channel 2 to remove cloud edges as well as 
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clouds with flat cloud top surfaces. Cloud top texture (horizontal gradients of reflectance) is the key feature to detect 320 

convection in this method, but since low cumulus clouds can also have lumpy cloud top surfaces, reflectance and Tb 

thresholds are used additionally to distinguish these low or shallow cumulus clouds from convective clouds.  

 

Results using different combinations of the three thresholds are compared. First, the lower bound of the texture thresholds are 

varied, keeping the upper threshold and the Tb and reflectance thresholds constant. Resulting FAR and POD are shown in Fig. 325 

6. The upper threshold does not change results much, and cloud edges are effectively removed by the threshold of 0.9. Using 

0.5 (yellow) misses significant amounts of convective regions while using lower values (blue and red) substantially 

misclassifies stratiform regions with flat cloud tops as convective, although their PODs are much higher. A value of 0.4 

(green diamond in Fig. 6) was chosen as a reasonable compromise between POD and FAR.  

 330 

POD and FAR using different combinations of Tb and reflectance thresholds are plotted in Fig. 7, and this time texture 

thresholds are kept constant with 0.4 and 0.9. The Tb threshold is varied from 230K to 250K, and the reflectance threshold is 

varied from 0.7 to 0.9. There is a trade-off between detecting more mature convective clouds in the earlier stage and 

incorrectly assigning cumulus clouds as convective clouds. Having lower value for the Tb threshold or higher value for the 

reflectance threshold leads to small FAR, but also leads to small POD. To make this method effective and not too harmful for 335 

the data assimilation, 250K for the Tb and 0.8 for the reflectance threshold (black diamond in Fig. 7a) are chosen. 240K and 

0.7 (orange) also showed similar results, but 250K and 0.8 were chosen due to lower FAR. Figure 7b shows results including 

MRMS data 10 minutes after the detection period to show its ability to detect convection earlier than MRMS. Most of the 

results showed improvements in both FAR and POD (lower FAR and higher POD) when later data are included. 

 340 

Despite FAR being relatively small, the method misses significant amounts of convective areas observed by MRMS. 

Therefore, regions that were missed are evaluated further to investigate which threshold was most effective in preventing the 

method from detecting convective regions. Figure 8 shows histograms of Tb, reflectance, and texture in the convective 

regions that were missed by the above method. It is clear from the figure that the largest number of misses were due to low 

texture values. There are many reasons why convective regions appear to have flat cloud top surfaces. Anvil or thick cirrus 345 

clouds above convective regions can smooth out or cover bubbling cloud tops, and there is simply no way to avoid this 

problem. Another reason may be the nature of the classification method. Since classification by MRMS is determined by rain 

rate, even if convective clouds are in a decaying mode and do not bubble anymore, clouds can still continue to precipitate 

considerable amounts, which would lead to convective category in the MRMS product. It is also possible that it is due to a 

misclassification of trailing stratiform regions using radars. Previous studies (Qi et al. 2013; Shusse et al. 2011) have indeed 350 

tried to improve the radar classification schemes. 
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As shown from these results, there are no perfect thresholds that can separate convective and stratiform clouds. Nevertheless, 

threshold values were chosen based on our purpose, which are to avoid FAR as much as possible and have decent POD 

comparable to radar products. Results applying both methods to one month data with the chosen thresholds are summarized 355 

in table 4, and based on the table, FAR is 14.4% and POD is 45.3%. Most of the detection was from mature convective 

clouds, and its accuracy of 85.8% was much higher than that of the detection of growing clouds, which was 71.0% at a pixel 

level. When MRMS data up to 30 minutes were included in the analysis, considering methods’ ability to detect convection 

earlier than radar, the accuracy of both methods increased, and overall FAR was reduced to 11.2%. Although FAR is slightly 

over 10%, 96.4% of these pixels were at least raining. Since the main objective of data assimilation is to have good prediction 360 

of precipitation, applying these methods during data assimilation can still be beneficial in case the forecast model did not 

produce precipitation. 

5 Conclusion and summary 

This study explores two methods to detect convective clouds using GOES-R ABI data with one minute interval. Using such 

high temporal resolution data facilitates cloud tracking and helps the accuracy of the detection method when calculating 365 

decreases in Tb of the same cloud. Convective clouds in the early stage were detected using Tbs of ABI channels 8 and 10. 

These channels were used to find cloud scenes with the developing shape of convective clouds. They were then used again to 

calculate the Tb decrease for those which maintained the developing shape for ten minutes. A cloud scene that had a 

consistent developing shape and a large decrease in Tb over ten minutes was classified as convective by this method. Mature 

convective clouds were detected by masking out regions with high Tb in ABI channel 14 and low reflectance in ABI channel 370 

2 and finding regions with high horizontal gradients of reflectance over the course of ten minutes. Results from this 

reflectance method were mostly consistent with the radar-derived products, although this method is limited to daytime use 

only. Nevertheless, it detects a wide range of convective area, not just regions with overshooting tops. 

 

These methods work well for well-structured convective clouds, but there are limitations to this method as with most 375 

algorithms using IR and VIS sensors have. Cirrus cloud shields are the biggest problem as they block Tb decreases 

underneath and smooth out lumpy reflectance surfaces. However, these methods can still be extremely useful for defining 

convection for assimilation into models where radar data is not available. Because regions identified as convective are most 

likely convective (~90% accuracy), this can easily be assimilated while setting cloudy regions to “missing” since the 

accuracy of detecting convection under large cirrus shields is poor. 380 
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 480 

 

Figure 1: (a) A typical shape of a convective cloud and its Tb distribution around the convective core (blue line). (b) 

Schematic representation of distributions of the inverted Gaussian matrix (green) and the Tb matrix (blue) when the 

cloud is convective. 

 485 

 

 

 

 

 490 

 

(a) (b)

Gaussian	matrix

Tb matrix

0
Tb

https://doi.org/10.5194/amt-2020-38
Preprint. Discussion started: 25 June 2020
c© Author(s) 2020. CC BY 4.0 License.



17 
 

 

 

Figure 2: (a) GOES-ABI 0.65µm visible channel imagery (0.5km) at 1930UTC 28 June 2017 over Iowa. Numbers on the 

colorbar represent reflectances. The red box indicates regions where two convective cells are detected by the GOES Tb 495 

method. (b) GOES-ABI 0.65µm visible channel imagery at 2130UTC 28 June 2017. (c) NEXRAD composite reflectivity 

(KOAX, KDMX, and KARX) around 1930UTC 28 June 2017. (d) MRMS PrecipFlag at 1930UTC 28 June 2017. Pink 

represents convective while green represents stratiform. 
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Figure 3: (a) GOES-ABI 7.3µm infrared channel imagery (K) at 1927UTC 28 June 2017. White circle denotes regions 505 
where two convective clouds start to grow. (b) Same as figure 3a, but at 1936UTC. (c) Tb matrices obtained from channel 

10 (7.3µm) that have the Gaussian shape at 1927UTC 28 June 2017. Blue circle denotes the same region as the white circle 

in figure 3a. Note that the scale of the colorbar is adjusted from figure 3a and 3b to better observe convective initiation. 

(d) Same as figure 3c, but at 1936UTC. 
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Figure 4: (a) Same as Figure 2a, but using different color table. (b) From the reflectance map in figure 4a, regions that 

have reflectances over 10 minutes less than 0.8 or have Tbs greater than 250K over 10 minutes are assigned reflectance of 

zero, and therefore colored in white. (c) Map of average gradients of reflectances over 10 minutes. Regions with average 

gradient less than 0.4 or greater than 0.9 are colored in white. (d) GOES-ABI 11.2µm infrared channel imagery (K) at 520 
1930UTC 28 June 2017. Regions that passed two criteria from figure 4b and 4c are colored in white. 
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Figure 5: (a) MRMS PrecipFlag at 2230UTC 18 June 2018. Pink represents convective while green represents stratiform. 530 

(b) Same as figure 5a, but at 2240UTC. (c) GOES-ABI 11.2µm infrared channel imagery (K) at 2230UTC 18 June 2018 

over the Great Plains. (d) Same as figure 5c, but at 2240UTC.  
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Figure 6: (a) Plot of probability of detection (POD) and false alarm ratio (FAR) using different texture thresholds. 
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Figure 7: (a) Plot of probability of detection (POD) and false alarm ratio (FAR) for different combinations of Tb and 555 
reflectance thresholds. (b) Same as figure 7a, but including MRMS dataset 10 minutes after the detection period. 
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Figure 8: Histograms of Tb, reflectance, and texture values when the pixel was not detected by the GOES detecting 

method due to only one of the thresholds. 570 
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Table 1. Spatial and temporal resolution of GOES-ABI 
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Spatial Resolution 

0.64µm visible 0.5km 

Other visible/near-IR 1.0km 

Bands (>2µm) 2km 

Spatial Coverage 

Full Disk 4 per hour 

Conus 12 per hour 

Mesoscale 30 or 60 sec 
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Table 2. Number of non-convective, convective, convective within 10 minutes, and convective within 20 minutes for using 

different threshold values (channel 8) 620 

 

Threshold value 
(K/min) 

Non-convective Convective  Convective within 
10 min 

Convective within 20 min 
(overall accuracy) 

-0.1 2635 1465 1610 1678 (38.9%) 

-0.2 632 1099 1182 1212 (65.7%) 

-0.3 269 848 913 933 (77.6%) 

-0.4 137 664 706 715 (83.9%) 

-0.5 83 531 561 568 (87.3%) 

-0.6 47 443 468 473 (91.0%) 

-0.7 27 354 375 378 (93.3%) 

-0.8 15 290 305 308 (95.4%) 

-0.9 11 233 246 249 (95.8%) 

-1.0 7 190 202 204 (96.7%) 

-1.1 7 162 171 173 (96.1%) 

-1.2 3 133 139 141 (97.9%) 

-1.3 1 105 108 109 (99.9%) 

-1.4 0 80 83 84 (100.0%) 

-1.5 0 64 66 67 (100.0%) 

-1.6 0 53 55 55 (100.0%) 

-1.7 0 44 46 46 (100.0%) 

-1.8 0 35 36 36 (100.0%) 

-1.9 0 28 28 28 (100.0%) 

-2.0 0 21 21 21 (100.0%) 
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Table 3. Number of non-convective, convective, convective within 10 minutes, and convective within 20 minutes for using 

different threshold values (channel 10) 

 

 630 

 

 

Threshold value 
(K/min) 

Non-convective Convective  Convective 
within 10 min 

Convective within 20 min 
(overall accuracy) 

-0.1 15444 2727 3228 3461 (18.3%) 

-0.2 6110 2085 2377 2499 (29.0%) 

-0.3 2862 1677 1869 1944 (40.4%) 

-0.4 1443 1354 1477 1526 (51.4%) 

-0.5 836 1126 1208 1241 (59.7%) 

-0.6 520 947 1008 1031 (66.5%) 

-0.7 305 794 839 856 (73.7%) 

-0.8 211 666 701 713 (77.2%) 

-0.9 135 562 587 597 (81.6%) 

-1.0 86 475 497 504 (85.4%) 

-1.1 57 406 426 433 (88.4%) 

-1.2 40 339 354 359 (90.0%) 

-1.3 27 276 289 293 (91.6%) 

-1.4 20 244 256 259 (92.8%) 

-1.5 13 196 207 209 (94.1%) 

-1.6 6 179 189 191 (97.0%) 

-1.7 5 151 160 161 (97.0%) 

-1.8 4 131 136 137 (97.2%) 

-1.9 3 108 112 112 (97.4%) 

-2.0 2 90 94 94 (97.9%) 
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